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ABSTRACT

New schemes to recover signals defined in the nodes of a
graph are proposed. Our focus is on reconstructing bandlim-
ited graph signals, which are signals that admit a sparse rep-
resentation in a frequency domain related to the structure of
the graph. The schemes are designed within the framework of
linear shift-invariant graph filters and consider that the seed-
ing signals are injected only at a subset of interpolating nodes.
After several sequential applications of the graph-shift opera-
tor –which computes linear combinations of the information
available at neighboring nodes– the seeding signals are dif-
fused across the graph and the original bandlimited signal is
eventually recovered. Conditions under which the recovery is
feasible are given, and the corresponding schemes to recover
the signal are proposed. Connections with the classical inter-
polation in the time domain are also discussed.

Index Terms— Graph signal processing, Interpolation,
Signal reconstruction, Graph shift operator, Graph filter

1. INTRODUCTION

Interpolation is a cornerstone problem in classical signal pro-
cessing. With the emergence of new fields of knowledge such
as network science and big data, there is a pressing need to
extend the results existing for classical time-varying signals
to signals defined on graphs [1,2]. This not only entails mod-
ifying the algorithms currently available for time-varying sig-
nals, but also gaining intuition on what concepts are preserved
(and lost) when a signal is defined, not in the classical time
grid, but in a more general graph domain.

In our approach, interpolated signals are obtained as the
output of a graph filter applied to a seeding signal. Graph fil-
ters are the generalization of the classical time invariant sys-
tem when the signals are defined in a general graph structure
as opposed to the classical time domain. Seeding signals are
graph signals defined on a subset of the nodes in the graph.
Hence, in order to define an interpolation scheme, two ob-
jects must be specified: the interpolating graph filter and the
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seeding signal. Different from both what occurs in the clas-
sical time domain and the usual approach followed for inter-
polating graph signals [3–6], we show that if graph filters are
used as interpolators, the values of the seeding signals at the
seeding nodes do not correspond with those of the signal to
interpolate. Moreover, we study the conditions under which
interpolation is possible, provide a scheme to locally achieve
recovery of bandlimited signals, and illustrate the application
of this scheme by reconstructing a graph signal.

Preliminary concepts are introduced in Section 2. The
interpolation schemes and their recovery conditions are pre-
sented in Section 3. Section 4 discusses the connections with
the interpolation of time-varying signals. Numerical results
and concluding remarks in Sections 5 and 6 close the paper. 1

2. BANDLIMITED GRAPH SIGNALS AND FILTERS

General notation and the concept of the graph-shift operator
[2] are introduced in Section 2.1, bandlimited graph-signals
in Section 2.2, and graph filters in Section 2.3.

2.1. General modeling considerations

Let G denote a directed graph with a set of nodes or vertices
N (with cardinality N ) and a set of links E , such that if node
i is connected to j, then (i, j) ∈ E . Since G is directed, the set
Ni := {j |(j, i) ∈ E} stands for the (incoming) neighbor-
hood of i. The focus of the paper is not on analyzing G, but a
graph signal defined on the set of nodes N . Formally, such a
signal can be represented as a vector x = [x1, ..., xN ]T ∈ RN

(where the i-th component represents the value of the signal
at node i) or, alternatively, as a function f : N → R.

The graph G can be endowed with the so-called graph-
shift operator S [2]. The shift S is a N × N matrix whose

1Notation: Generically, the entries of a matrix X and a (column) vector
x will be denoted as Xij and xi; however, when contributing to avoid con-
fusion, the alternative notation [X]ij and [x]i will be used. The notation T

and H stands for transpose and transpose conjugate, respectively; diag(x)
is a diagonal matrix satisfying [diag(x)]ii = [x]i; ei is the ith N × 1
canonical vector (all entries of ei are zero except the ith one, which is one);
EK := [e1, ..., eK ] is a tall matrix collecting the K first canonical vectors;
and 0 is the all-zero matrix (when not clear from the context, a subscript indi-
cating the dimensions will be used). The modulus (remainder) obtained after
dividing x by N will be denoted as modN (x).



entry Sji can be non-zero only if i = j or if (i, j) ∈ E .
Widely-used choices for S are the adjacency matrix of the
graph [2] and the Laplacian [1]. The intuition behind S is to
represent a linear transformation that can be computed locally
at the nodes of the graph. More rigorously, if y is defined as
y = Sx, then node i can compute yi provided that it has
access to the value of xj for j ∈ Ni. We assume that S can
be decomposed as S = VΛV−1, where Λ is diagonal.
Remark: Graph support of time signals. To establish con-
nections with time-varying signals, it is convenient to de-
fine here the directed-chain graph Gdc, with node set N =
{1, 2, . . . , N} and edge set Edc = {(i,modN (i) + 1)}Ni=1.
This graph is the natural support of (circulant) time varying
signals [2]. Its adjacency and Laplacian matrices are denoted,
respectively, as Adc and Ldc := I−Adc. Setting S either
to Adc or to Ldc implies that V is equal to the Fourier ba-
sis F, where Fij := 1√

N
e+j 2πN (i−1)(j−1) with j :=

√
−1.

Setting S = Adc has the additional advantage of satisfying
Λii = e−j

2π
N (i−1), i.e., the eigenvalues of the shift operator

correspond to the classical discrete frequencies.

2.2. Bandlimited graph signals

The common practice when addressing the problem of sam-
pling signals in graphs is to assume that the graph-shift op-
erator S plays a key role in explaining the signals of interest
x. More specifically, that x can be expressed as a linear com-
bination of a subset of the columns of V = [v1, ...,vN ], or,
equivalently, that the vector x̂ = V−1x is sparse [7]. In this
context, vectors vi are interpreted as the graph frequency ba-
sis, x̂i as the corresponding signal frequency coefficients, and
x as a K-bandlimited graph signal. The superscript ̂ will
be used to emphasize that the signal pertains to the frequency
domain. We will assume that the set of active frequencies are
known and, without loss of generality, that those are the first
K ones. Then, with x̂K := [x̂1, . . . , x̂K ]T being a K × 1
vector collecting the coefficients associated with the active
frequencies, it holds that x is a K-bandlimited signal if

x̂ = [x̂1, . . . , x̂K , 0, . . . , 0]T (1)
x = Vx̂ = VK x̂K , (2)

where VK := VEK = [v1, ...,vK ].

2.3. Graph filters

Let H : RN → RN be a graph signal operator. We are inter-
ested in operators of the form H :=

∑L−1
l=0 hlS

l, i.e., in linear
transformations that can be expressed as a polynomial of the
graph-shift operator. This type of transformations are called
shift-invariant graph filters [2]. Two of the main reasons to
focus on such a class of transformations are: i) there exists
a theory that connects those filters with the classical time-
invariant filters, facilitating the analysis and design of H; and

ii) since the application of the graph operator to a graph sig-
nal can be computed locally (cf. related discussion in Section
2.1), transformations of the form

∑L−1
l=0 hlS

l can be imple-
mented locally too (for example, with L − 1 exchanges of
information among neighbors).

Note that the graph filter H can be written as H :=
V
(∑L−1

l=0 hlΛ
l
)
V−1. The diagonal matrix Ĥ :=

∑L−1
l=0 hlΛ

l

can be viewed as the frequency response of H and it can be
alternatively written as Ĥ = diag(ĥ), where vector ĥ is a
vector that contains the N frequency coefficients of the filter.
By defining the N × L Vandermonde matrix

Ψ :=

 1 λ1 . . . λL−11
...

...
...

1 λN . . . λL−1N

 (3)

and the vector containing the time coefficients of the filter as
h := [h0, . . . , hL−1]T , then ĥ = Ψh and therefore

H =
∑L−1

l=0 hlS
l =Vdiag

(
Ψh
)
V−1 =Vdiag(ĥ)V−1. (4)

Remark: Frequency response in the time domain. For the
case of Gdc, the shift Sdc has a strong structure that can be
leveraged when designing signal processing algorithms for
time-varying signals. For example, since Adc and Ldc are cir-
culant, V−1 and V correspond to FH and F. Similarly, when
Sdc = Adc, the Vandermonde matrix Ψ is

√
NFH . Matrix

F and some of its submatrices are unitary and both row and
column full-rank Vandermonde. As it will be shown in the en-
suing sections, some of these useful properties are lost when
considering signals defined in more general graph supports,
rendering the interpolation problem more challenging.

3. INTERPOLATING SIGNALS USING A SUBSET OF
SEEDING NODES

Consider a set of P nodes serving as seeds for interpolating
theK-bandlimited graph signal x. Since x (or equivalently x̂)
has K degrees of freedom, for the time being we will assume
that P ≥ K (we will be more concrete later on). To facilitate
exposition we will also assume, without loss of generality,
that the seeding nodes are the first P ones i = 1, . . . , P . Let
x̄i denote the value that node i injects into the network and,
based on it, define the P × 1 and N × 1 seeding vectors as

x̄P = [x̄1, . . . , x̄P ]T (5)

x̄ = [x̄1, . . . , x̄P , 0, . . . , 0]T . (6)

Then, given a bandlimited signal x, our goal is to design H
and x̄ such that

x = Hx̄, (7)

where H has the particular structure of a shift-invariant graph
filter [cf. Section 2.3]. Note that the values in x̄ are not forced
to be the same than those in the signal to reconstruct x. The



reason for doing this will become clear in Section 4. Since x
is bandlimited, it is reasonable to write the previous equation
in the frequency domain. To do this, both sides of (7) are left
multiplied by V−1, which yields

x̂=V−1Hx̄=V−1Vdiag(Ψh)V−1x̄=diag(Ψh)̂̄x, (8)

where for the second equality we have used (4). We will now
use the fact that x̄ is sparse [cf. (6)]. To do so, let us define
the N × P matrix UP := V−1EP . Then, the frequency
representation of the seeding signal x̄ is

̂̄x = V−1x̄ = V−1EP x̄P = UP x̄P . (9)

Our initial goal of designing H and x̄ such that x = Hx̄ can
be reformulated as designing h and x̄P such that

x̂ = diag
(
Ψh
)(

UP x̄P

)
, (10)

which is a bilinear system ofN equations andL+P variables.
Define the row-selection matrices C = [eK+1, . . . , eN ]T and
C̄ = (EK)T . Then, leveraging the fact of x̂ being sparse
[cf. (1)], the N equations in (10) can be split into two groups

0N−K =Cdiag(Ψh)
(
UP x̄P

)
=diag(CΨh)

(
CUP x̄P

)
(11)

x̂K =C̄diag(Ψh)
(
UP x̄P

)
=diag(C̄Ψh)

(
C̄UP x̄P

)
. (12)

Note that the conditions in (11) are the same for any K-
bandlimited signal. On the other hand, the conditions in (12)
depend on the specific signal to be interpolated. A natural
approach is to use the filter coefficients h –which are related
to the global behavior of the network– to guarantee that (11)
holds, while using the seeding signal x̄P to satisfy (12) and,
hence, to guarantee that the output of the interpolation is x.
This is explored in Sections 3.1 and 3.2.

3.1. Low-pass interpolation

The conditions under which the approach just described is
guaranteed to find a feasible solution are given in the form
of two propositions. Ensuing discussions describe the actual
procedure to interpolate the signal.

Proposition 1 Let D denote the number of distinct eigenval-
ues in {λk}Nk=K+1. Then, it holds that if L > D, for any Ψ
there exist infinitely many nonzero L×1 vectors h∗ such that,
after setting h = h∗, (11) is satisfied for all UP and x̄P .

Proof: See Appendix A. �

Since Ψ is a Vandermonde matrix, it can be shown that for
L > D, CΨ is rank deficient and the dimension of its kernel
space is L −D. Hence, setting h to any nonzero element of
the kernel space will satisfy (11). By default, we will assume
that L = D + 1 and set the coefficients h∗ that solve (11)
equal to the unit vector that spans the one-dimensional kernel
of CΨ. Note also that for the case where all the eigenvalues

are distinct, we need L > N −K. An alternative way to
design the filter coefficients that annihilate a specific set of
frequencies is to use the “successive nulling of eigenvalues”
approach in [8], which relies on a slightly different definition
of a graph filter.

Once the coefficients of the filter are designed, the next
step is to find the optimum seeding signal. Substituting h =
h∗ into (12) yields

x̂K = diag
(
C̄Ψh∗

)(
C̄UP x̄P

)
. (13)

Then, the following result holds.

Proposition 2 The system of K equations in (13) is guaran-
teed to have a solution w.r.t. x̄P if the two following condi-
tions hold: i) λk1 6= λk2 for any (λk1 , λk2) pair such that
k1 ≤ K and k2 > K; and ii) rank(C̄UP ) ≥ K.

Proof: See Appendix B. �

Different from the time domain, where all the eigenval-
ues of the shift operator (frequencies) are distinct, in the more
general graph domain there can be graph topologies that give
rise to shift operators with repeated eigenvalues. Condition i)
states that: a) if the graph has such a property; and b) the sig-
nal of interest is zero in some of the repeated frequencies and
non-zero in others, then the interpolation procedure described
in this section will fail. The reason is that the graph filters H
always give the same frequency response if the corresponding
eigenvalues are the same. Therefore, it is not possible for H
to annihilate one of the frequencies without annihilating the
other. We will see that a way to fix this problem is to use the
schemes in Section 3.2. Condition ii) requires the rank of the
K × P matrix C̄UP being at least K. At the very least, this
requires P , the number of seeding nodes, to be equal toK, the
number of frequencies present in x. However, there may be
cases where setting P = K will fail. To see why this is true,
notice that [UP ]k,p can be viewed as how strongly node p ex-
presses frequency k. Suppose for example that there exists a
k such that that [UP ]k,p = 0 for all nodes p = 1, . . . , P , then
it is not possible to reconstruct a signal whose kth frequency
coefficient [x̂]k is non-zero using that set of nodes. This prob-
lem is also present when sampling graph signals by observing
the value of the signal in a subset of nodes [9].

3.2. Augmented low-pass interpolation

The schemes in Section 3.1 implement a graph filter of order
L−1. For the case of a shift operator without repeated eigen-
values, this implies that L−1 has to be at leastN−K, which
can be a high number for large networks. Since the order of
H corresponds to the number of applications of S, when the
filter is implemented in a distributed setup, L−1 will account
for the number of times every node needs to exchange infor-
mation with its neighbors. Although not all nodes in the net-
work will have to implement L− 1 exchanges (nodes that are



far from the seeding nodes will not be required to exchange
information until the “diffused” seeding signal reaches them),
the signaling overhead can be a problem. In this context it is
natural to ask for solutions that reduce the order of the filter
by increasing the number of seeding nodes P .

Mathematically, the problem to solve is very similar to the
one in Section 3.1. Suppose that L is given and use this value
to define the augmented (N−L+1)×1 frequency vector as

x̂K,L := [x̂1, ..., x̂K , 0, ..., 0]T . (14)

The problem is now to find h and x̄P such that [cf. (11)-(12)]

0L−1 = diag
(
CΨh

)(
CUP x̄P

)
(15)

x̂K,L = diag
(
C̄Ψh

)(
C̄UP x̄P

)
, (16)

where C and C̄ have L−1 and N−L+1 rows, respectively.
The filter coefficients must be obtained now to annihilate the
L−1 frequencies in (15) and the P seeding nodes must inject
a signal such that, when multiplied by the frequency response
of the filter, it replicates the frequency pattern in x̂K,L.

In (15) the filter is used to annihilate L − 1 frequencies;
however, if the shift operator S has repeated eigenvalues,
more frequencies can be annihilated with the same filter
degree. This reduces the required number P of seeding
nodes. To be more concrete, recall that D stands for the
number of distinct eigenvalues in {λk}NK+1, let md denote
the multiplicity of each of the distinct eigenvalues (with∑D

d=1md = N−K) and assume that the indices d are cho-
sen such that md ≥ md+1. Suppose now that the filter is
designed to annihilate the frequencies corresponding to the
L−1 first distinct eigenvalues; i.e., those corresponding to
d=1, ..., L−1. Then, L′ :=

∑L−1
d=1 md ≥L−1 frequencies will

be annihilated. The signal in the seeding nodes is designed
now to recover x̂K,L′ [cf. (16)], which is a smaller vector
than x̂K,L, reducing the required number P of seeding nodes.

4. RELATING GRAPH AND TIME INTERPOLATION

In the classical time domain, interpolation of a sampled sig-
nal is performed using a sinc function, which corresponds to
an ideal low-pass filter ĤLP whose bandwidth is related to
that of the bandlimited signal x. If the sampling is performed
at the minimum possible rate, the bandwidth of ĤLP has to
be exactly the same than that of x. If the signal is oversam-
pled, the bandwidth of ĤLP can be larger. In other words, if
more samples than the minimum required number are avail-
able, then ĤLP does not need to cancel all the frequencies
that are not present in x. The schemes just presented reveal
that this is also the case when the signals are defined in more
general graph domains.

The main differences between the reconstruction schemes
presented and classical time interpolation come from the fact
that the basis V of a general graph shift S is not as structured
as the Fourier basis F. Among these differences, we remark

the fact that for general graphs the seeding values x̄P do not
coincide with the values of the desired signal x. This con-
trasts with the case of interpolation from uniform sampling
for classical time varying signals where x̄P is a subset of the
signal x. In fact, it can be rigorously shown that requiring
such a condition for general graphs would lead to an infeasi-
ble interpolation. To be concrete, suppose that P = K, define
the K×1 vector x̄K := ET

Kx and, based on it the N ×1 vec-
tor x̄ := [x̄T

K ,0]T . Recall that we want to design a filter H
that using the fact that x is sparse in the frequency domain
achieves that x = Hx̄. Firstly, we leverage the fact that x̄ and
x̂ are sparse to write

x̄K = ET
Kx = ET

KVx̂ = ET
KVEK x̂K = VK,K x̂K , (17)

where VW,Q := ET
WVEQ is the submatrix of the basis V

formed by the first W rows and Q columns. Secondly, we
write the goal of x = Hx̄ into the frequency domain as x̂ =

diag(ĥ)V−1x̄ and use again the sparsity of x̄ and x̂ to write

x̂K =ET
Kdiag(ĥ)V−1EK x̄K = diag(ET

K ĥ)ET
KV−1EK x̄K

= diag(ĥK)UK,K x̄K , (18)

where ĥK := ET
K ĥ contains the first K components of ĥ and

UW,Q := ET
WV−1EQ. Substituting (17) into (18) yields

x̂K = diag(ĥK)UK,KVK,K x̂K . (19)

Since (19) must hold for all x̂K , it can only be satisfied if
diag(ĥK)UK,KVK,K=I. This requires matrix (UK,KVK,K)
to be diagonal. While this is true whenK = N , this is not true
for a general K. However, in the time domain where V = F,
for some cases the multiplication of sub matrices is guaran-
teed to be diagonal. For example, when the K seeding nodes
are equally spaced, the submatrices UK,K and VK,K are
also Fourier and then it follows that UK,KVK,K = K/N I.
This not only implies that (19) is satisfied, but also reveals
that all the entries in ĥK must be set to N/K. In words, that
the optimal low-pass interpolator in the time domain has the
same response for all the active frequencies.

5. NUMERICAL RESULTS

Consider the 20-node graph G depicted in Fig. 1 and define
the associated graph-shift operator S such that Sii = 1 for all
i and Sji = −1 for all (i, j) in the edge set E of G. More-
over, consider the signal x on G depicted in Fig. 1(left) by the
color of the nodes. Although seemingly random in the graph
domain, the structure of the signal x is highly determined by
the graph. To illustrate this, in Fig. 2 we present the frequency
components x̂ of the signal in the graph frequency basis given
by the columns of V (which are the eigenvectors of the op-
erator S) [cf. (2)]. From Fig. 2, it is immediate that x has
a bandwidth of 5, thus, following the procedure described in
Section 3.1, we interpolate this signal using 5 seeding nodes.
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Fig. 1: (left) The graph G and the signal x defined on it given by the node colors. (mid) The seeding signal x̄ used to reconstruct x. The
number of seeding nodes equals the bandwidth of the signal [cf. Fig. 2]. (right) One shift of the seeding signal Sx̄. The weighted sum of
successive shifts leads to perfect reconstruction of x, where the weights are given by the optimal filter coefficients h∗.

Freq. Basis

Fr
eq

. C
om

po
ne

nt
s

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 2: Frequency components x̂ of graph signal x [cf. Fig. 1(left)].

In Fig. 1(mid) we present the seeding signal x̄. Notice
that this signal is non-zero only for the five seeding nodes.
Further notice that the value of the seeding signal x̄ in the
seeding nodes differs from the value of the original signal x
in the seeding nodes [cf. Fig. 1(left)], as discussed in Sec-
tion 4. The seeding signal propagates through the graph by
local interactions given by the shift operator S. E.g., in Fig.
1(right) we can observe the value of Sx̄ after one application
of the shift, where only the seeding nodes and their neighbors
present a non-zero signal value. The original signal x is then
recovered by a weighted sum of successive applications of S
to the seeding signal x̄ where the weights are given by the
optimal filter coefficients [cf. Proposition 1]. Indeed, the fact
that all eigenvalues of S are distinct ensures the fulfillment
of Proposition 1 for a filter of degree 15 as well as the ful-
fillment of condition i) in Proposition 2. By simply checking
that rank(C̄U5) = 5 [cf. condition ii) in Proposition 2], we
are guaranteed perfect reconstruction, as observed in practice.

6. CONCLUSIONS

This work designed schemes for the interpolation of bandlim-
ited graph signals using data injected by a subset of nodes.
The schemes can be viewed as implementations of a graph
filter –a polynomial of the graph-shift operator– that accounts
for the sparse structure of the graph and can be implemented
distributedly. We showed that a K-bandlimited signal can be
recovered using K nodes if the interpolator corresponds to a
low-pass filter in the (graph) frequency domain. In contrast to
classical time-varying signals, it was also shown that if the in-
terpolating nodes use as seeds the values of the original signal
in those nodes, the interpolation is not feasible.
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A. PROOF OF PROPOSITION 1

In order to solve (11) with respect to h independently of the
seeding signal x̄P , one needs that CΨh = 0; i.e., h needs to
belong to the kernel of the (N −K) × L matrix CΨ. Since
CΨ is a Vandermonde matrix, its number of linearly indepen-
dent rows is equal to the number of distinct basis, which isD.
Thus, the existence of a solution h∗ 6= 0 requires L > D.

B. PROOF OF PROPOSITION 2

Condition i) is required to guarantee that all the elements of
C̄Ψh∗ are nonzero. We prove this by contradiction. Let
us first recall that the following facts hold true (cf. Propo-
sition 1): a)CΨh∗ = 0N−K ; b) h∗ 6= 0L and c) rank of CΨ
is L − 1. Assume now w.l.o.g. that the element of C̄Ψh∗

that is zero is the K-th one. Then, we can use a) to write
[eK , . . . , eN ]TΨh∗ = 0N−K+1. Condition i) and fact c)
guarantee that [eK , . . . , eN ]TΨ has rank L; then, satisfying
[eK , . . . , eN ]TΨh∗ = 0N−K+1 requires h∗ = 0L, which
contradicts b). Hence, all the elements of C̄Ψh∗ are nonzero.
This guarantees that diag(C̄Ψh∗) is invertible, so that (13)
can be written as

diag(C̄Ψh∗)−1x̂K = (C̄UP )x̄P , (20)

where C̄UP is a K×P submatrix of V−1. To guarantee that
the system of equations in (20) has at least one solution, we
need condition ii) to hold.
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